wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

If xtan(θ+α)=ytan(θ+β)=ztan(θ+y), then prove that x+yxysin2(αβ)=0

Open in App
Solution

Given,
xtan(θ+α)=ytan(θ+β)=ztan(θ+γ)
(x+y)(xy)=(tan(θ+α)+tan(θ+β))(tan(θ+α)tan(θ+β))
We know that, (tanA+tanB)(tanAtanB)=sin(A+B)sin(AB)
(x+y)(xy)=sin((θ+α)+(θ+β))sin((θ+α)(θ+β))
(x+y)(xy)=sin(2θ+α+β)sin(αβ)
Consider,sin2(αβ)×(x+y)(xy)=sin2(αβ)×sin(2θ+α+β)sin(αβ)
=sin(αβ)×sin(2θ+α+β)
=12×(cos(β+θ)cos(α+θ)
Consider,sin2(αβ)×(x+y)(xy)+sin2(βγ)×(y+z)(yz)+sin2(γα)×(z+x)(zx)

=12×((cos(β+θ)cos(α+θ))+(cos(γ+θ)cos(β+θ))+(cos(α+θ)cos(β+θ)))=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon