The correct options are
A local minima at x=0
C local maximum at x=1
D two local maxima and one local minima
g(x)=7x2e−x2∀x∈R,
g′(x)=7(e−x2.2x−e−x2.2x.x2)=14e−x2(x−x3)
g′′(x)=14e−x2(1−5x2+2x4)
Now for maxima or minima of g(x)
g′(x)=0⇒x=0,−1,1
Clearly g′′(1)<0,g′′(−1)<0,g′′(0)>0
Hence x=1,−1 are local maxima point and x=0 is minima point.