If I1=∫π20f(sin2x)sinxdx and I2=∫π40f(cos2x)cosxdx, then I1I2 is equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B√2
I1=∫π20f(sin2x)sinxdx ...(1)
Using ∫a0f(x)dx=∫a0f(a−x)dx, we get I1=∫π20f(sin(π−2x))sin(π2−x)dx I1=∫π20f(sin2x)cosxdx ...(2) Adding (1) and (2) we get 2I1=∫π20f(sin2x)(sinx+cosx)dx 2I1=√2∫π20f(sin2x)cos(x−π4)dx Put x−π4=θ⇒dx=dθ, so that 2I1=√2∫π4−π4f(sin(π2+2θ))cosθdθ 2I1=√2∫π4−π4f(cos2θ)cosθdθ=2√2∫π40f(cos2θ)cosθdθ