A) For I1=∫π20dx2cosx+sinx+1
Let I=∫dx2cosx+sinx+1
Substituting tanx2=t⇒12sec2x2dx=dt
we get sinx=2tt2+1,cosx=1−t21+t2,dx=2dt1+t2
Then
I=2∫dt−t2+2t+3=2∫dt4−(t−1)2=12log∣∣∣t−1+2t−1−2∣∣∣=12log∣∣∣t+1t−3∣∣∣=12log∣∣
∣
∣∣tanx2+1tanx2−3∣∣
∣
∣∣
Hence
I1=⎡⎢
⎢
⎢⎣12log∣∣
∣
∣∣tanx2+1tanx2−3∣∣
∣
∣∣⎤⎥
⎥
⎥⎦π20=12log∣∣∣1+11−3∣∣∣−12log∣∣∣0+10−3∣∣∣=12log3
B) For I3=∫π20dx2cosx+sinx+3
Let I=∫dx2cosx+sinx+3
Substituting tanx2=t⇒12sec2x2dx=dt
We get sinx=2tt2+1,cosx=1−t21+t2,dx=2dt1+t2
Then
I=2∫dtt2+2t+5=2∫dt(t+1)2+4=tan−1t+12=tan−1tanx2+12
Hence
I3=⎡⎢
⎢
⎢⎣tan−1tanx2+12⎤⎥
⎥
⎥⎦π20=tan−11−tan−112=tan−1⎛⎜
⎜
⎜⎝1−121+12⎞⎟
⎟
⎟⎠=tan−113
C) For I2=∫π20dx2cosx+sinx+2
Let I=∫dx2cosx+sinx+2
Taking tanx2=t⇒12sec2x2dx=dt
we get
sinx=2tt2+1,cosx=1−t21+t2,dx=2dt1+t2
Therefore,
I=∫dtt+2=log(t+2)=log(tanx2+2)
Hence
I2=[log(tanx2+2)]π20=log3−log2=log32
D) I4=∫π20dx2cosx+sinx+4
Let I=∫dx2cosx+sinx+4
Taking tanx2=t⇒12sec2x2dx=dt, we get
sinx=2tt2+1,cosx=1−t21+t2,dx=2dt1+t2
Therefore,
I=∫dtt2+t+3=∫dt(t+12)2+114=2√11tan−1(2t+1√11)
Hence
I2=2√11⎡⎢
⎢
⎢⎣tan−1⎛⎜
⎜⎝2tanx2+1√11⎞⎟
⎟⎠⎤⎥
⎥
⎥⎦π20=2√11(tan−13√11−tan−11√11)