wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Ia=π/20dx2cosx+sinx+a then the value of Ia for

Open in App
Solution

A) For I1=π20dx2cosx+sinx+1
Let I=dx2cosx+sinx+1
Substituting tanx2=t12sec2x2dx=dt
we get sinx=2tt2+1,cosx=1t21+t2,dx=2dt1+t2
Then
I=2dtt2+2t+3=2dt4(t1)2=12logt1+2t12=12logt+1t3=12log∣ ∣ ∣tanx2+1tanx23∣ ∣ ∣
Hence
I1=⎢ ⎢ ⎢12log∣ ∣ ∣tanx2+1tanx23∣ ∣ ∣⎥ ⎥ ⎥π20=12log1+11312log0+103=12log3
B) For I3=π20dx2cosx+sinx+3
Let I=dx2cosx+sinx+3
Substituting tanx2=t12sec2x2dx=dt
We get sinx=2tt2+1,cosx=1t21+t2,dx=2dt1+t2
Then
I=2dtt2+2t+5=2dt(t+1)2+4=tan1t+12=tan1tanx2+12
Hence
I3=⎢ ⎢ ⎢tan1tanx2+12⎥ ⎥ ⎥π20=tan11tan112=tan1⎜ ⎜ ⎜1121+12⎟ ⎟ ⎟=tan113
C) For I2=π20dx2cosx+sinx+2
Let I=dx2cosx+sinx+2
Taking tanx2=t12sec2x2dx=dt
we get
sinx=2tt2+1,cosx=1t21+t2,dx=2dt1+t2
Therefore,
I=dtt+2=log(t+2)=log(tanx2+2)
Hence
I2=[log(tanx2+2)]π20=log3log2=log32
D) I4=π20dx2cosx+sinx+4
Let I=dx2cosx+sinx+4
Taking tanx2=t12sec2x2dx=dt, we get
sinx=2tt2+1,cosx=1t21+t2,dx=2dt1+t2
Therefore,
I=dtt2+t+3=dt(t+12)2+114=211tan1(2t+111)
Hence
I2=211⎢ ⎢ ⎢tan1⎜ ⎜2tanx2+111⎟ ⎟⎥ ⎥ ⎥π20=211(tan1311tan1111)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon