The correct option is D −3√25(e2π+1)
Put x2+π4=θ so that x=2θ−π/2 and
dx=2dθ Thus,
I=2∫5π/4π/4e2θ−π/2cosθdθ
=2e−π/2I1
where I1=∫5π/4π/4e2θcosθdθ
=12e2θcosθ]5π/4π/4+12∫5π/4π/4e2θsinθdθ
=14e2θ(2cosθ+sinθ)]5π/4π/4−14I1
⇒54I1=14[e5π/2(−2√2−1√2)−eπ/2(2√2+1√2)]
⇒I1=−35√2(e5π/2+eπ/2)
Thus,
I=−3√25(e2π+1)