No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2(π−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√2a(π−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a(π2−1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Da(π2−1) I=∫a0√a−xa+xdx I=∫a0√a−xa+x×a−xa−xdx I=∫a0a−x√a2−x2dx I=∫a0a√a2−x2dx−∫a0x√a2−x2dx I=a[sin−1xa]a0−∫a0x√a2−x2dx Substitute a2−x2=t2 ⇒−xdx=tdt When x=0⇒t=a When x=a⇒t=0 I=a[sin−1xa]a0−∫a0t√t2dt I=aπ2−a ⇒I=a(π2−1)