The correct option is A π/8
Using ∫a0f(x)dx=∫a0f(a−x)dx we get
I=∫π/20cos3xsinxcos4x+sin4xdx(2)
Adding (1) and (2), we get
2I=∫π/20sinxcosxcos4x+sin4xdx
Using cos4x+sin4x=(cos2x)2+(sin2x)2
=(1/4)(1− cos2x)2+(1/4)(1+cos2x)2
=(1/2)(1+cos22x)
∴2I=∫π/202sinxcosx1+cos22xdx
Substitute cos2x=t, so that
2I=12∫−11dt1+t2=−∫10dt1+t2=π4
⇒I=π/8