The correct option is C π/4
Using ∫a0f(x)dx=∫a0f(a−x)dx,
We can write
I=∫π0dx5+3cos(π−x)=∫π0dx5−3cosx(2)
Adding (1) and (2), we get
2I=∫π0[15+3cosx+15−3cosx]dx
I=5∫π0[dx25−9cos2x]
I=5∫π0[dx16+9sin2x]=5∫π0[ cosec2x16cot2x+25]dx
=14tan−1(4cotx5)]π0
=−14{−π2−π2}=π4