wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=π20log(cosxcos2nx)dx then 1 is same as

A
π20cotxcos(2nx)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π20cotxsin(2nx)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π20tanxcos(2nx)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12nπ20tanxsin(2nx)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 12nπ20tanxsin(2nx)dx
I=π20log(cosxcos2nx)dx
I=π20log(sinxsin2nx)dx
Adding the two integrals
2I=π20log(sinxcosxcos2nxsin2nx)dx
2I=π20log(sin2xsin4nx)dxπ20log4dx
2I=π20logsin2xdx+π20logsin4nxdxπ2log4
I1=π20logsin2xdx
I1=π20logcos2xdx
2I1=π20logsin2xcos2xdx
2I1=π20logsin4xdxπ20log2dx
Put 2x=t
When x=0,t=0 and when x=π2,t=π
2I1=12π0logsin2tdtπ2log2
2I1=π20logsin2tdtπ2log2
I1=π2log2
I2=π20logsin4nxdx
I2=π20logcos4nxdx
2I2=π20logsin4n.2xdxπ20log2dx
Put 2x=u
When x=0,u=0 and when x=π2,u=π
2I2=12π0logsin4nuduπ2log2
2I2=π20logsin4nuduπ2log2
I2=π2log2
So, 2I=2πlog2
I=πlog2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon