The correct option is D 12n∫π20tanxsin(2nx)dx
I=∫π20log(cosxcos2nx)dx
I=∫π20log(sinxsin2nx)dx
Adding the two integrals
2I=∫π20log(sinxcosxcos2nxsin2nx)dx
2I=∫π20log(sin2xsin4nx)dx−∫π20log4dx
2I=∫π20logsin2xdx+∫π20logsin4nxdx−π2log4
I1=∫π20logsin2xdx
I1=∫π20logcos2xdx
2I1=∫π20logsin2xcos2xdx
2I1=∫π20logsin4xdx−∫π20log2dx
Put 2x=t
When x=0,t=0 and when x=π2,t=π
2I1=12∫π0logsin2tdt−π2log2
2I1=∫π20logsin2tdt−π2log2
I1=−π2log2
I2=∫π20logsin4nxdx
I2=∫π20logcos4nxdx
2I2=∫π20logsin4n.2xdx−∫π20log2dx
Put 2x=u
When x=0,u=0 and when x=π2,u=π
2I2=12∫π0logsin4nudu−π2log2
2I2=∫π20logsin4nudu−π2log2
⇒I2=−π2log2
So, 2I=−2πlog2
I=−πlog2