wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=dxcos4xcos2xsin2x+sin4x, then I equals

A
2tan1(tan2x2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan1(tan2x2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan1(tan2x2)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2tan1(tan2x2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C tan1(tan2x2)+C

I=dxcos4xcos2xsin2x+sin4xI=dxcos4x(1tan2x+tan4x)lettanx=tsec2xdx=dtI=(dtsec2x)cos4x(1t2+t4)I=sec2xdt(1t2+t4)=(1+t2)dt(1t2+t4)

We'll now divide the numerator and denominator by t2

I=(1+1t2)(t2+1t21)dtI=(1+1t2)(t2+1t22+1)dtI=(1+1t2)(t1t)2+1dtletz=(t1t)dz=(1+1t2)dtI=dzz2+1=tan1z+Cz=t1t=tanx1tanxz=tan2x1tanx=2(2tanx1tan2x)1z=2tan2xtan1z=tan1[2tan2x]=tan1[2tan2x]=tan1[tan2x2]tan1z=tan1(1z)I=tan1[tan2x2]+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of a Right Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon