If I=∫dxcos4x−cos2xsin2x+sin4x, then I equals
I=∫dxcos4x−cos2xsin2x+sin4xI=∫dxcos4x(1−tan2x+tan4x)lettanx=t∴sec2xdx=dtI=∫(dtsec2x)cos4x(1−t2+t4)I=∫sec2xdt(1−t2+t4)=∫(1+t2)dt(1−t2+t4)
We'll now divide the numerator and denominator by t2
I=∫(1+1t2)(t2+1t2−1)dtI=∫(1+1t2)(t2+1t2−2+1)dtI=∫(1+1t2)(t−1t)2+1dtletz=(t−1t)∴dz=(1+1t2)dt∴I=∫dzz2+1=tan−1z+Cz=t−1t=tanx−1tanxz=tan2x−1tanx=−2(2tanx1−tan2x)−1z=−2tan2xtan−1z=tan−1[−2tan2x]=−tan−1[2tan2x]=tan−1[tan2x2]∵−tan−1z=tan−1(1z)∴I=tan−1[tan2x2]+C