No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1cos(a−b)log∣∣∣sin(x−a)cos(x−b)∣∣∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
If 1sin(a+b)log∣∣∣sin(x−a)cos(x−b)∣∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1cos(a+b)log∣∣∣sin(x−a)cos(x−b)∣∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1cos(a−b)log∣∣∣sin(x−a)cos(x−b)∣∣∣+C I=∫dxsin(x−a)cos(x−b) Multiply numerator and denominator by a constant cos(a−b) =1cos(a−b)∫cos(a−b)sin(x−a)cos(x−b)dx We know cos(a−b)=cos((x−b)−(x−a))=cos(x−b)cos(x−a)+sin(x−b)sin(x−a) =1cos(a−b)∫cos(x−b)cos(x−a)+sin(x−b)sin(x−a)sin(x−a)cos(x−b)dx =1cos(a−b)∫{cos(x−b)cos(x−a)sin(x−a)cos(x−b)dx+sin(x−b)sin(x−a)sin(x−a)cos(x−b)dx} =1cos(a−b){∫cos(x−a)sin(x−a)dx+∫sin(x−b)cos(x−b)dx} =1cos(a−b){log(sin(x−a))−log(cos(x−b))}+C =1cos(a−b)log∣∣∣sin(x−a)cos(x−b)∣∣∣+C