wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=sinx+sin3xcos2xdx=Acosx+Blog|f(x)|+C, then:

A
A=14,B=12,f(x)=2cosx12cosx+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A=12,B=342
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A=12,B=35,f(x)=2cosx+12cosx1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A=12,B=342,f(x)=2cosx12cosx+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C A=12,B=342,f(x)=2cosx12cosx+1
Given:
I=sinx+sin3xcos2xdx=Acosx+Blog|f(x)|+C
To find:- A,B and f(x)
I=sinx(1+sin2x)dx(2cos2x1)
Put t=cosxdt=sinxdx
I=(1t2)+1(2t21)(dx) ...... (sin2x=1cos2x)

=(t22)(2t21)dt

=12t22t212dt

=12⎢ ⎢⎜ ⎜132×1(t212)⎟ ⎟dt⎥ ⎥

I=12dt34dtt212

I=12t34×12ln⎜ ⎜ ⎜ ⎜t12t+12⎟ ⎟ ⎟ ⎟+c

I=12cosx34×12ln(2cosx12cosx+1)+c

Hence, A=12,B=342 and f(x)=2cosx12cosx+1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon