1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
If I = ∫x3/...
Question
If
I
=
∫
x
3
√
x
2
+
2
x
+
5
d
x
=
1
6
f
(
x
)
−
A
120
g
(
x
)
+
C
where
f
(
x
)
=
(
2
x
2
−
5
x
−
36
)
√
x
2
+
2
x
+
5
,
g
(
x
)
=
log
(
x
+
1
+
√
x
2
+
2
x
+
5
)
. Then, A is equal to
Open in App
Solution
I
=
∫
x
3
√
x
2
+
2
x
+
5
d
x
=
∫
x
3
√
(
x
+
1
)
2
+
4
d
x
Substitute
t
=
x
+
1
⇒
d
t
=
d
x
I
=
∫
(
t
−
1
)
3
√
t
2
+
4
d
t
Again substitute
t
=
2
tan
u
⇒
d
t
=
2
sec
2
u
d
u
I
=
∫
(
2
tan
u
−
1
)
3
sec
u
d
u
=
∫
(
−
sec
u
+
8
tan
3
u
sec
u
−
12
tan
2
u
sec
u
+
6
tan
u
sec
u
)
d
u
=
8
∫
tan
3
u
sec
u
d
u
−
12
∫
tan
2
u
sec
u
d
u
+
6
∫
tan
u
sec
u
d
u
−
∫
sec
u
d
u
=
I
1
+
I
2
+
I
3
+
I
4
Where
I
1
=
8
∫
tan
3
u
sec
u
d
u
=
8
∫
tan
u
sec
u
(
sec
2
u
−
1
)
d
u
p
=
sec
u
⇒
d
p
=
tan
u
sec
u
d
u
I
1
=
8
∫
(
p
2
−
1
)
d
p
=
−
8
p
+
8
p
3
3
=
−
8
sec
u
+
8
sec
3
u
3
I
2
=
−
12
∫
tan
2
u
sec
u
d
u
=
−
12
∫
(
sec
3
u
−
sec
u
)
d
u
=
−
12
∫
sec
3
u
d
u
+
12
∫
sec
u
d
u
=
−
6
tan
u
sec
u
+
6
∫
sec
u
d
u
=
−
6
tan
u
sec
u
+
6
log
(
tan
u
+
sec
u
)
I
3
=
6
∫
tan
u
sec
u
d
u
w
=
sec
u
⇒
d
w
=
tan
u
sec
u
I
3
=
∫
d
w
=
w
=
sec
u
I
4
=
−
∫
sec
u
d
u
=
−
log
(
tan
u
+
sec
u
)
Therefore,
I
=
8
3
sec
(
tan
−
1
t
2
)
3
−
6
tan
(
tan
−
1
t
2
)
sec
(
tan
−
1
t
2
)
−
2
sec
(
tan
−
1
t
2
)
+
5
log
(
tan
(
tan
−
1
t
2
)
+
sec
(
tan
−
1
t
2
)
)
=
1
6
(
√
x
2
+
2
x
+
5
(
2
x
2
−
5
x
−
5
)
+
30
log
(
1
2
(
x
+
√
(
x
+
1
)
2
+
4
+
1
)
)
)
Hence,
A
=
1200
Suggest Corrections
0
Similar questions
Q.
If f(x) = x
2
- 2x + 1 and g(x) = x
3
- 2x
2
+ 1, find f(x) + g(x).
Q.
∫
√
x
2
+
2
x
+
5
dx
is
equal
to