wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=x3x2+2x+5dx=16f(x)A120g(x)+C where f(x)=(2x25x36)x2+2x+5,g(x)=log(x+1+x2+2x+5). Then, A is equal to

Open in App
Solution

I=x3x2+2x+5dx=x3(x+1)2+4dx
Substitute t=x+1dt=dx
I=(t1)3t2+4dt
Again substitute t=2tanudt=2sec2udu
I=(2tanu1)3secudu=(secu+8tan3usecu12tan2usecu+6tanusecu)du=8tan3usecudu12tan2usecudu+6tanusecudusecudu=I1+I2+I3+I4
Where
I1=8tan3usecudu=8tanusecu(sec2u1)dup=secudp=tanusecuduI1=8(p21)dp=8p+8p33=8secu+8sec3u3I2=12tan2usecudu=12(sec3usecu)du=12sec3udu+12secudu=6tanusecu+6secudu=6tanusecu+6log(tanu+secu)I3=6tanusecuduw=secudw=tanusecuI3=dw=w=secuI4=secudu=log(tanu+secu)
Therefore,
I=83sec(tan1t2)36tan(tan1t2)sec(tan1t2)2sec(tan1t2)+5log(tan(tan1t2)+sec(tan1t2))=16(x2+2x+5(2x25x5)+30log(12(x+(x+1)2+4+1)))
Hence, A=1200

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon