The correct option is D none of these
Let I=∫(7x+4)√5−4x−2x2dx
Put t=x+b2a=x+−4−2=x+1
⇒dx=dt,7x+4=7(t−1)+4=7t+3,5−4x−2x2=5−4(t−1)−2(t−1)2=7−2t2
I=∫(7t+3)√7−2t2dt=7∫t√7−2t2dt+3∫√7−2t2dt
=7(23)(−14)(7−2t2)3/2
+3√2(t2√72−t2+12(72)sin−1(t√7/2))+c
=−76(7−2t2)+3t2√7−2t2+21√24sin−1(√2t√7)+c
=−76(5−4x−2x2)3/2+32(x−1)(5−4x−2x2)1/2+21√24sin−1(√2(x+1)√7)+c