No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cπ Given, I=∫π−πesinxesinx+e−sinxdx....(i) ⇒I=∫π−πesin(2π−x)esin(2π−x)+e−sin(2π−x)dx ⇒I=∫π−πe−sinxe−sinx+esinxdx....(ii) On adding Eqs. (i) and (ii), we get 2I=∫π−πesinx+e−sinxesinx+e−sinxdx ⇒2I=∫π−π1dx ⇒2I=[x]π−=π+π ⇒I=π