I=∫sin−1(2x+2√4x2+8x+13)dx=xsin−1(2x+2√4x2+8x+13)−∫6x√14x2+8x+13√4x2+8x+13dx=xsin−1(2x+2√4x2+8x+13)−6∫x4x2+8x+13dx=xsin−1(2x+2√4x2+8x+13)−34∫8x+8(4x2+8x+13)dx+6∫14x2+8x+13dx=xsin−1(2x+2√4x2+8x+13)+I1+I2
Where
I1=−34∫8x+8(4x2+8x+13)dx
Put 4x2+8x+13=t⇒(8x+8)dx=dt
I1=−3logt4=−3log(4x2+8x+13)4
And
I2=6∫14x2+8x+13dx=6∫1(2x+2)2+9dx
Put u=2x+2⇒du=2dx
I2=3∫1u2+9du=tan−1(2x+23)
Therefore,
I=−3log(4x2+8x+13)4+xsin−1(2x+2√4x2+8x+13)+tan−1(2x+23)
Hence A=186