If I=∫tan−1√(√x−1)dx=(u2+1)2tan−1u−A1863u3−u+C where u=√√x−1 then A is equal to.
A
321
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
312
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
316
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
318
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 321 I=∫tan−1(√√x−1)dx=xtan−1(√√x−1)−14∫1√√x−1dx Let I1=−14∫1√√x−1dx Put t=√x⇒dx=12√xdx I1=−12∫t√t−1dt Put v=t−1⇒dv=dt I1=−12∫v+1√vdu=−12∫(√v+1√v)du=−v3/23−√v+c=−(t−1)3/23−√t−1+c=−(√x−1)3/23−√√x−1+c Hence I=xtan−1(√√x−1)−(√x−1)3/23−√√x−1+c=(u2+1)2tan−1u−u33−u+c Where u=√√x−1 Therefore A=321