If Im=∫10xmtan−1x dx
Im=∫10xmtan−1xdx
=[xm+1tan−1xm+1]10−1m+1∫10xm+11+x2dx
⇒Im(m+1)=π4−∫10xm+11+x2dx⋯(i)
replacing m→m−2in(i)
∴(m−1)Im−2=π4−∫10xm−11+x2dx⋯(ii)
∴(m+1)Im+(m−I)Im−2
π4−∫10xm+11+x2dx+π4−∫10xm−11+x2dx
π2−∫10xm+1+xm−11+x2dx
=π2−∫10xm−1(1+x2)1+x2dx
=π2−∫10xm−1dx
=π2−1m