The correct options are
A I10+I8=19
B I7+I5=16
C I8−I12=299
D I12+2I10+I8=2099
In=∫π40tannxdx
Replacing n→n+1
In+1=∫π40tann+1xdx ...(1)
Replacing n→n−1
In−1=∫π40tann−1xdx
In+1+In−1=∫π40(tann+1x+tann−1x)dx=1n
∴I7+I5=16
I10+I8=19
I8−I12=I8+I10−(I10+I12)=19−111=299