If In=∫n−n({x+1}{x2+2}+{x2+3}{x2+4})dx, (where . denotes the fractional part), then I1 is equal to
A
−13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C13 In=∫n−n({x+1}{x2+2}+{x2+3}{x2+4})dxIn=∫n−n((x+1−[x+1])(x2+2−[x2+2])+(x3+3−[x3+3]))(x4+4−[x4−4])dxI1=∫1−((x+1−[x+1])(x2+2−[x2+2])+(x3+3−[x3−3])(x4+4−[x4−4]))dxI1=∫0−1((x+1)(x2)+(x3)(x4))dx+∫10((x)(x2)+(x3)(x4))dxI1=∫0−1(x3+x2+x7)dx+∫10(x3+x7)dx =[x44+x33+x88]0−1+[x44+x88]10 =14+13−18+14+18=13