Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
10∑m=1I2m+1=10π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
10∑m=1I2m=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
In=In+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are AIn=In+2 C10∑m=1I2m+1=10π D10∑m=1I2m=0 Given In=∫π−πsinnx(1+πx)sinxdx ...(1) using ∫baf(x)dx=∫baf(b+a−x)dx we get In=∫π−ππxsinnx(1+πx)sinxdx ...(2) Adding equation (1) and (2), we have 2In=∫π−πsinnxsinxdx=2∫π0sinnxsinxdx (∵f(x)=sinnxsinx is an even function) ⇒In=∫π0sinnxsinxdx Now, In+2−In=∫π0sin(n+2)x−sinnxsinxdx=∫π02cos(n+1)x.sinxsinxdx =2∫π0cos(n+1)xdx=2[sin(n+1)x(n+1)]π0=0 ∴In+2=In ...(3) Since In=∫π0sinnxsinxdx⇒I1=π and I2=0 From equation (3) I1=I3=I5=.....=π and I2=I4=I6=...=0 ⇒∑10m=1I2m+1=10π and ∑10m=1I2m=0 Therefore option (a),(b),(c) are correct