The correct option is D A.P.
Consider It+2+It−2It+1
∫π/20(sin2tx+sin2(t+2)x−2sin2(t+1)x)dxsin2x
∫π/20(sin2(t+2)x−sin2(t+1)x−sin2(t+1)x+sin2tx)dxsin2x
∫π/20[sin(2t+3)x−sin(2t+1)x]dxsinx
=2∫π/20cos(2t+2)xdx=2(sin(2t+2)x2(t+1))π/20
=1(t+1)(0)=0
∴It,It+1,It+2ϵA.P.
Short Cut Method :
Substitute t=1,2,3 in given integral we get
I1=π2,I2=π,I3=3π2
I1,I2,I3ϵA.P.