wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 10dx(1+x)(2+x)x(1x)=πA6(3+1)(157), then A is equal to

Open in App
Solution

Since x(1x)=14(x12)2,
so put x=12+12sinθ
Therefore,
10dx(1+x)(2+x)x(1x)
π2π212cosθ(14(1+sinθ)2+32(1+sinθ)+2)12cosθdθ
=4π0dϕcos2ϕ8cosϕ+15, where ϕ=θ+π2

=42[π0dϕcosϕ(4+1)π0dϕcosϕ(41)]
Let, I1=π0dϕcosϕa, where a>1
Put tanϕ2=tdϕ=2dt(1+t2)
I1=02(1+t2)(1t2)(1+t2)adt=21+a0dtt2+(a1)(a+1)

=21+aa+1a1(tan1ta+1a1)]0
=2a21π2=πa21
Thus,
I=2[π24+π8]
=π(1216)=π(31)6

Hence A=314

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon