If ∫10sint1+tdt=α, then the value of the integral ∫4π4π−2sint24π+2−tdt is?
A
2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C−α I=∫4π4π−2sint24π+2−tdt =12∫4π4π−2sint21+(2π−t2)dt Put, 2π−t2=z ∴−12dt=dz,i.e.,dt=−2dz when t=4π−2,z=2π−2π+1=1 when t=4π,z=2π−2π=0 ∴I=12∫01sin(2π−z)(−2dz)1+z =∫10−sinzdzz+1=−∫sint1+tdt=−α