∫a014+x2dx=∫a0122+x2dx⇒∫1a2+x2dx=1atan−1xa+c
(Formula)
[12tan−1x2]a0⇒π8=12tan−1a2+12tan−10
⇒π8=12tan−1a2 ⇒2∗π8=a2
⇒tan(π4)=a2
a=2
Hence the correct value of a is 2
If ∫a011+4x2dx=π8,then a = ............