The correct options are
A A=π2,B=0
D A=π4,B=π4sinα
Let I=∫α0dx1−cosαcosα
=∫α0dx(cos2x2+sin2x2)−cosα(cos2x2−sin2x2)
=∫α0dx(1−cosα)cos2x2+(1+cosα)sin2x2
=∫α0dx2sin2α2cos2x2+2cos2α2sin2x2
=12∫α0sec2α2sec2x2tan2α2+tan2x2dx
put tanx2=t⇒12sec2x2dx=dt
∴I=∫tanα20sec2α2t2+tan2α2dt
=sec2α2cotα2[tan−1(ttanα2)]tanα20
=2sinα.π4=π2sinα
A=π2,B=0 or A=π4,B=π4sinα