The correct option is B 8
Let I1=∫∞0log(1+x2)1+x2dx and I2=∫10log(1+x)1+x2dx
Put x=tanθ in both integral
⇒dx=sec2θdθ
I1=∫π20log(sec2θ)sec2θ⋅sec2θdθ=−∫π20logcos2θdθ......(1)
Also using (∫a0f(x)dx=∫a0f(a−x)dx)
I1=−∫π20logsin2θdθ........(2)
Adding (1) and (2) we get 2I1=−2∫π20log(sinθcosθ)dθ
⇒I1=−∫π20logsin2θ2dθ=log2∫π20dθ−∫π20log(sin2θ)dθ
Put 2θ=x⇒2dθ=dx
⇒I1=π2log2−12∫π0log(sinθ)dθ=π2log2−∫π20log(sinθ)dθ=π2log2+I12, using (2)
∴I1=πlog2
Now I2=∫π40log(1+tanθ)dθ
⇒I2=∫π40log(1+tan(π4−θ))dθ=∫π40log(1+1−tanθ1+tanθ)dθ
⇒I2=∫π40log(21+tanθ)dθ=log2∫π40dθ−∫π40log(1+tanθ)dθ
⇒I2=π4log2−I2⇒I2=π8log2
Hence λ=I1I2=8