wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If π/20dx3+4sinxdx=1(k)log(4+73) then find the value of k.

Open in App
Solution

Let I=π/20dx3+4sinx=π/20dx3+8sin(x/2)cos(x/2)
=π/20sec2(x/2)dx3(1+tan2(x/2))+8tan(x/2)=π/20sec2(x/2)dx3tan2(x/2)+8tan(x/2)+3
Substitute tan(x/2)=t(1/2)sec2(x/2)dx=dt
Therefore
I=102dt3t2+8t+3=2310dtt2+83t+1=2310dt(t+43)2[(7)/3]2
=23.12.[(7)/3]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢logt+43(7/3)t+43+[(7)/3]⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
=1(7)⎢ ⎢ ⎢log1+43(7/3)1+43+[(7)/3]log43(7/3)43+[(7)/3]⎥ ⎥ ⎥
=1(7)log777+(7)log474+(7)=1(7)log(71(7)+1).(4+74(7))
=1(7)log⎢ ⎢ ⎢(71)271×(4+7)2167⎥ ⎥ ⎥=1(7)log[473×23+879]
=1(7)log(36+9727)=1(7)log(4+73)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon