If ∫π01a+bcosxdx=π√a2−b2, then ∫π01(a+bcosx)2dx=?
(a,b) is the mid point of the chord ¯AB of the circle x2+y2=r2. The tangent at A,B meet a C. then area of ΔABC
Find (a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3=