The correct option is B π
We have, ∫π0xf(sin2x+sec2x)dx=k∫π/20f(sin2x+sec2x)dx
Let I=∫π0xf(sin2x+sec2x)dx .....(i)
=∫π0(π−x)f(sin2(π−x)+sec2(π−x))dx
=∫π0(π−x)f(sin2x+sec2x)dx ....(ii)
On adding equations (i) and (ii), we get
2I=π∫π0f(sin2x+sec2x)dx
⇒2I=2π∫π/20f(sin2x+sec2x)dx
⇒I=π∫π/20f(sin2x+sec2x)dx
On comparing with given integral, we get k=π