If ∫x0f(t)dt=x+∫1xtf(t)dt,
If ∫x0f(t)dt=x+∫1xt f(t) dt, then the value of f(1) is [IIT 1998; AMU 2005]
Let f(x) is a continuous function which takes positive values for x (x>0), and satisfy ∫x0f(t)dt=x√f(x) with f(1)=12. Then the value of f(√2+1) equals