I=200C6∫10x194(1−x)6dx
Using by parts -
I=200C6[[(1−x)6×x195195]10+6195[∫10(1−x)5×x195dx]]
Here, [(1−x)6×x195195]10=0
∴I= 200C66195[∫10(1−x)5×x195dx]
Integrating by parts again 5 more times, we get -
I= 200C66!195×196×197×198×199×200×∫10x200dxI=[x201201]10=1201⇒k=201