If ∫31x2F′(x)dx=−12 and ∫31x3F′′(x)dx=40, then the correct expression(s) is (are)
A
9f′(3)+f′(1)−32=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
∫31f(x)dx=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
9f′(3)−f′(1)+32=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
∫31f(x)dx=−12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are C9f′(3)−f′(1)+32=0 D∫31f(x)dx=−12 ∫31f(x)dx=∫31xF(x)dx=(F(x).x22)31−∫31x22.F′(x)dx=92(−4)−12(−12)=−12 f′(3)=F(3)+3F′(3)−1)f′(1)=F′(1)−2)
For option C, subsitute equation 1) and 2)
9f′(3)−f′(1)+32⇒9F(3)+27F′(3)−F′(1)+32
27F′(3)−F′(1)−4=0
On substituting the values of F(x) we get the value as zero