If ∫baf(x)f(a)+f(a+b−x)dx=10, then
To find a and b
We know that
∫baf(x)dx=∫baf(a+b−x)dxI=∫baf(x)f(x)+f(a+b−x)dx=∫baf(a+b−x)f(a+b−x)+f(a+b−(a+b−x))dx
⇒I=∫baf(a+b−x)f(a+b−x)+f(x)dxI+I=∫baf(x)f(x)+f(a+b−x)dx+∫baf(a+b−x)f(a+b−x)+f(x)dx
2I=∫baf(x)+f(a+b−x)f(x)+f(a+b−x)dx⇒2I=∫ba1.dx=[x]ba=b−a⇒I=12(b−a)
Given that, 12(b−a)=10
b−a=20
Hence the correct answer are those which (b−a)=20
A,B and C are correct.