The correct option is C A=25,B=−25√15,f(x)=4tan(x2)+1√15
Let I=∫1(sinx+4)(sinx−1)dx
=15∫(sinx+4)−(sinx−1)(sinx+4)(sinx−1)dx
=15∫2dt2t−1−t2−15∫2dt2t−4(1+t2)[tanx2=t]
=−25∫dt2t−1−t2−110∫dtt2+12t+1
=251(t−1)−25√15tan−1(4t+1√15)+C
=251tanx2−1−25√15tan−1⎛⎜
⎜⎝4tanx2+1√15⎞⎟
⎟⎠+C
But ∫1(sinx+4)(sinx−1)dx=A1tanx2−1+Btan−1(f(x))+C1
Therefore, A=25,B=−25√15,f(x)=4tanx2+1√15