If ∫cotx⋅ln(sinx)dx=f(x)+C, then the number of solution(s) of the equation f(x)=0 in [0,2π], is
(where C is constant of integration)
Open in App
Solution
I=∫cotx⋅ln(sinx)dx
Putting ln(sinx)=y⇒1sinx×cosxdx=dy ⇒cotxdx=dy ⇒I=∫ydy=y22+C=(ln(sinx))22+C ⇒f(x)=(ln(sinx))22=0 ⇒ln(sinx)=0⇒sinx=1 ⇒x=π2{∵x∈[0,2π]}
So, only one solution