If ∫11+cos2x+2cosxsinxdx=tan−1[f(x)]+C, then f(π4−x) is equal to
(where C is integration constant)
A
11+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
11+cotx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
21+cotx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
21+tanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D21+tanx I=∫11+cos2x+2cosxsinxdx
Dividing numerator and denominator by cos2x ⇒I=∫sec2xsec2x+1+2tanxdx
Put tanx=t ⇒sec2xdx=dt⇒I=∫dtt2+2t+2=∫dt(1)2+(t+1)2⇒I=tan−1(t+1)+C⇒I=tan−1(tanx+1)+C⇒f(x)=1+tanx⇒f(π4−x)=1+tan(π4−x)=1+1−tanx1+tanx⇒f(π4−x)=21+tanx