I=∫11−cosx−sinxdx⇒I=∫1+tan2x21+tan2x2−(1−tan2x2)−2tanx2dx⎡⎢
⎢⎣∵sinx=2tanx21+tan2x2, cosx=1−tan2x21+tan2x2⎤⎥
⎥⎦⇒I=∫sec2x22tan2x2−2tanx2dx
Put tanx2=t
⇒sec2x2dx=2dt⇒I=∫dtt2−t⇒I=∫dtt(t−1)⇒I=∫dtt−1−∫dtt⇒I=ln|t−1|−ln|t|+C⇒I=ln∣∣∣t−1t∣∣∣+C⇒I=ln∣∣
∣
∣∣tanx2−1tanx2∣∣
∣
∣∣+C⇒f(x)=x2=g(x)
So,
f(1)+g(1)−1=0