wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 11sin4x dx=1abtan1(2tanx)+1btanc+C then find ab

Open in App
Solution

1(1sin4x)dx=sec4xdx(sec4xtan4x)

Put
tanx=t
sec2xdx=dt

Therefore,
=(1+t2)dt{(1+t2)2t4}=(1+t2)dt(t4+2t2+1t4)=(1+t2)dt(2t2+1)=dt2t2+1+t22t2+1dt=12tan1(2t)+12(2t2+11)dt(2t2+1)=12tan1(2tanx)+12tanx122tan1(2tanx)+C=122tan1(2tanx)+12tanx+Ca=2,b=2

So,ab=1

Hence,solved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon