If ∫1cos2x(1−4tan2x)dx=K⋅ln∣∣∣1+2tanx1−2tanx∣∣∣+C, then 1K is
(where C is integration constant)
Open in App
Solution
I=∫1cos2x(1−4tan2x)dx
Put tanx=t ⇒sec2xdx=dt⇒I=∫dt1−(2t)2=∫12⋅(1+2t)+(1−2t)(1−2t)(1+2t)dt=12[−ln|1−2t|2+ln|1+2t|2]=14ln∣∣∣1+2t1−2t∣∣∣+C=14ln∣∣∣1+2tanx1−2tanx∣∣∣+C ⇒K=14