If ∫1+e7lnx−e3lnxe2lnx−1dx=aln∣∣∣x+bx−b∣∣∣+g(x)+C,g(0)=0. Then which of the following option(s) is/are correct
(where a,b are fixed constants and C is constant of integration)
A
2a−b=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2a+b=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
g′(1)=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
g(1)=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cg′(1)=2 Let I=∫1+e7lnx−e3lnxe2lnx−1dx ⇒I=∫1+x7−x3x2−1dx ⇒I=∫1x2−1dx+∫x3(x4−1)x2−1dx ⇒I=∫1x2−1dx+∫x3(x2−1)(x2+1)x2−1dx ⇒I=∫1x2−1dx+∫x5dx+∫x3dx ⇒I=12ln∣∣∣x−1x+1∣∣∣+x66+x44+C ⇒I=12ln∣∣∣x−1x+1∣∣∣+x4(2x2+3)12+C ∴a=12,b=−1,g(x)=x4(2x2+3)12 ⇒g(1)=512 and g′(x)=12x5+12x312⇒g′(1)=2