If ∫1−x7x(1+x7)dx=Aln|x|+Bln|1+x7|+C, then which of the following is/are true (where A,B are fixed constants and C is constant of integration)
I=∫1−x7x(1+x7)dx
⇒I=∫2−(1+x7)x(1+x7)dx
⇒I=∫2dxx8(1x7+1)−∫dxx
Put 1x7+1=t
⇒−7x−8dx=dt
∴I=∫2dt−7t−ln|x|+C
⇒I=−27ln∣∣∣1+1x7∣∣∣−ln|x|+C
⇒I=−27ln|x7+1|+2ln|x|−ln|x|+C
⇒I=ln|x|−27ln|x7+1|
∴A=1 and B=−27