If ∫1x(x5−1)(x5+1)dx=Aln|x|+Bln|x5−1|+Cln|x5+1|+D, then which of the following is/ are correct
(where A,B,C are fixed constants and D is constant of integration)
A
B−C=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2A+30B=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
A−B+C=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
AB+C=−5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is DAB+C=−5 Let I=∫1x(x5−1)(x5+1)dx ⇒I=∫1x(x10−1)dx ⇒I=∫1x11(1−x−10)dx
Put 1−x−10=t ⇒10x−11dx=dt ∴I=110∫dtt ⇒I=110ln|t|+D ⇒I=110ln|1−x−10|+D ⇒I=110(ln|x10−1|−lnx10)+D ⇒I=−lnx+110ln|x5−1|+110ln|x5+1|+D ∴A=−1,B=110 and C=110