2ex+3e–x=A(4ex+7e–x)+B(4ex–7e–x)
Comparing both sides
4A+4B=2⋯(i)
7A−7B=3⋯(ii)
On solving, we get
A=1328 and B=128
I=∫2ex+3e−x4ex+7e−xdx=∫⎛⎜
⎜
⎜⎝1328(4ex+7e−x)+128(4ex−7e−x)4ex+7e−x⎞⎟
⎟
⎟⎠dx
=1328x+128loge(4ex+7e−x)+C
Comparing LHS and RHS gives u=132 and v=12⇒u+v=7