If ∫(2x+3)(x2−3x+1)dx(x4−7x2+1)(1+ln(1+3x+x2))=f(x)+C, where C is constant and f(0)=0, then
A
limx→0f(x)x=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→0f(x)x=13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
limx→0f(x2)ln(cosx)=−6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
limx→0f(x2)ln(cosx)=−16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Climx→0f(x2)ln(cosx)=−6 I=∫(2x+3)(x2−3x+1)dx(x4−7x2+1)(1+ln(1+3x+x2)) =∫(2x+3)(x2−3x+1)dx(x2−3x+1)(x2+3x+1)(1+ln(1+3x+x2)) =∫(2x+3)dx(x2+3x+1)(1+ln(1+3x+x2))
L1=limx→0ln(1+ln(1+3x+x2))x(00)form
By L' Hospital rule, L1=limx→00+2x+3(1+3x+x2)1+ln(1+3x+x2)=3
L2=limx→0f(x2)ln(cosx) =limx→0ln(1+ln(1+3x2+x4))ln(cosx) =limx→0ln(1+ln(1+3x2+x4))ln(1+3x2+x4)×ln(1+3x2+x4)ln(cosx) =limx→0ln(1+3x2+x4)3x2+x4×3x2+x4ln(cosx) =limx→03x2+x4ln(cosx)(00)form
By L' Hospital rule, we have L2=−limx→0(6x+4x3)cosxx×sinxx=−6