If ∫2x+5√7−6x−x2dx=A√7−6x−x2+Bsin−1(x+34)+C (where C is a constant of integration), then the orderd pair (A,B) is equal to :
A
(−2,−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(2,1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(−2,1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(2,−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(−2,1) Let I=∫2x+5√7−6x−x2dx I=∫2x+6√7−6x−x2dx−∫1√7−6x−x2dx Let I=I1+I2 So, I1=∫2x+6√7−6x−x2dx Put 7−6x−x2=t2⇒−(2x+6)dx=2tdt ⇒I1=∫−2dt=−2t=−2√7−6x−x2+c1 Now, I2=∫1√7−6x−x2dx =∫1√42−(x+3)2dx ⇒I2=sin−1(x+34)+c2 therefore, I=−2√7−6x−x2+sin−1(x+34)+C Hence, A=−2 and B=1