The correct option is D k+m=3
I=∫(3sinϕ−2)cosϕ5−cos2ϕ−4sinϕdϕ
Let y=sinϕ⇒dy=cosϕ dϕ
Therefore
∫(3sinϕ−2)cosϕ5−cos2ϕ−4sinϕdϕ=∫(3y−2)dy5−(1−y2)−4y=∫(3y−2)y2−4y+4dy=∫(3y−2)(y−2)2
Now, we can write
3y−2(y−2)2=Ay−2+B(y−2)2
Therefore
3y−2=A(y−2)+B
Comparing the coefficients of y and constant term, we get
A=3 and B=2A−2⇒B=4
Therefore, the required integral is given by
I=∫[3y−2+4(y−2)2]dy=3∫dyy−2+4∫dy(y−2)2=3ln|y−2|−4(1y−2)+C=3ln|sinϕ−2|+42−sinϕ+C=3ln(2−sinϕ)+42−sinϕ+C[∵(2−sinϕ) is always positive]
∴ On comparing, we get
k=4; m=−1