If ∫3ex−5e−x4ex+5e−xdx=Ax+Bln|4ex+5e−x|+C, then which of the following is/are true
(where A,B are fixed constants and C is constant of integration)
∫3ex−5e−x4ex+5e−xdx=Ax+Bln(4ex+5e−x)+C
Differentiating w.r.t. x on both sides, we get
3ex−5e−x4ex+5e−x=A+B(4ex−5e−x)(4ex+5e−x)
⇒3ex−5e−x=A(4ex+5e−x)+B(4ex−5e−x) Comparing the coefficients of terms containing ex and e−x on both sides, we get 4(A+B)=3⇒A+B=34
5A−5B=−5⇒A−B=−1
Solving these equations, we get
A=−18,B=78