The correct option is C b,a,c
We can express the numerator as,
4ex+6e−x=A(9ex−4e−x)+B(9ex+4e−x)
Comparing, the corresponding coefficients,
A = −2136 and B=3536
Rewriting the given expression,
∫A(9ex−4e−x)(9ex−4e−x)dx+∫B(9ex+4e−x)(9ex−4e−x)dx
Let,(9ex−4e−x)=t
differentiating both sides,
(9ex+4e−x)dx=dt
Putting back the values,
∫Adx+∫Bdtt
=Ax+Blnt+k
=Ax+Bln(9ex−4e−x)+k
Hence, a=−2136 andB=3536c=−4
So descending order is b, a ,c