If ∫5tanxtanx−2dx=x+aln|sinx−2cosx|+C for arbitrary constant of integration C, then the value of a is
Open in App
Solution
∫5tanxtanx−2dx=∫5sinxsinx−2cosxdx=∫(sinx−2cosx)+2(cosx+2sinx)sinx−2cosxdx=∫dx+2∫cosx+2sinxsinx−2cosxdx=x+2∫cosx+2sinxsinx−2cosxdx=x+2ln|sinx−2cosx|+C
On comparing, we get a=2